SUBSTITUTION

Pearson Edexcel - Thursday 2 November 2017 - Paper 1 (Non-Calculator) Higher Tier

1.

$1+\sqrt{2}$	B1	for a value for a known trigonometric ratio stated
	P1	for process to form 2 equations in a and b or one correct value stated
	P1	for complete process to solve to reach $a = 2$ and $b = 1$
	Al	for $1+\sqrt{2}$ oe
	1+√2	PI PI

Pearson Edexcel - Wednesday 8 November 2017 - Paper 3 (Calculator) Higher Tier

2.

21	$\frac{2}{5}$	P1	for process to find \overrightarrow{AB} (= b - a) or \overrightarrow{BA} (= a - b)
		P1	for process to find $\overline{MN} (= -\frac{1}{2}\mathbf{b} + \mathbf{a} + 2\mathbf{a})$ or $\overline{PN} (= -\mathbf{k}(\mathbf{b} - \mathbf{a}) + 2\mathbf{a})$
			or $\overrightarrow{MP} (= -\frac{1}{2}\mathbf{b} + \mathbf{a} + k(\mathbf{b} - \mathbf{a}) \text{ or } \frac{1}{2}\mathbf{b} + (1 - k)(\mathbf{a} - \mathbf{b}))$
		P1	for process to find two of \overline{MN} , \overline{PN} and \overline{MP}
		P1	for process to find k, using \overline{MN} as a multiple of \overline{PN} or using \overline{MN} as a multiple of \overline{MP} or using \overline{PN} as a multiple of \overline{MP}
		Al	for $\frac{2}{5}$ oe

Pearson Edexcel - Wednesday 13 June 2012 - Paper 2 (Calculator) Higher Tier

3.

19	$\sqrt{\frac{8.5 \times 10^9 - 4 \times 10^8}{8.5 \times 10^9 \times 4 \times 10^8}}$ = $\sqrt{\frac{8.1 \times 10^9}{3.4 \times 10^{18}}}$ = $\sqrt{2.3823529 \times 10^{-9}}$ OR $\sqrt{\frac{1}{4 \times 10^8} - \frac{1}{8.5 \times 10^9}}$ = $\sqrt{2.5 \times 10^{-9} - 1.17647 \times 10^{-10}}$ = $\sqrt{2.3823529 \times 10^{-9}}$	4.9 × 10 ⁻³	3	B3 for 4.88×10^{-5} to 4.9×10^{-5} (B2 for digits 238(23529) or 24 or 488(09353) or 49) (B1 for digits 81 or 34) OR B3 for 4.88×10^{-5} to 4.9×10^{-5} (B2 for digits 238(23529) or 24 or 488(09353) or 49) (B1 for digits 25 or 117(647))
	$=\sqrt{2.3823529\times10^{-9}}$			

Pearson Edexcel - Tuesday 10 November 2009 - Paper 4 (Calculator) Higher Tier

ſ	3	(a)	$3 \times 2 + 5 \times -4$	- 14	2	M1 for $3 \times 2 + 5 \times -4$ oe or 6 and -20 seen A1 cao for -14
		(b)		3(m-2)	1	B1 cao

OCR GSCE – Tuesday 5 November 2019 – Paper 6 (Calculator) Higher Tier

5.

10	(a)	165 000	1	
	(b)	3	1	
	(c)	165 000 × 1.03 ⁷ 202 929.1878 truncated or rounded to at least 3sf	1 1	

OCR GSCE – Tuesday 11 June 2019 – Paper 6 (Calculator) Higher Tier

6.

00	-	17 150	4		
22	а	17 150	1		
	b	16 807 ÷ 17 150 = 0.98	1	Condone: 17150 × [0].98 = 16807 16807 + [0].98 = 17150	
	c	15 818 to 15 819	2	M1 for 17150 × 0.98 ⁴ or their (a) × 0.98 ⁴ or for 16807 × 0.98 ³ and A1FT from their (a) × 0.98 ⁴ correctly evaluated	FT from <i>their</i> (a), and only if method shown
				Alternative methods using division M1 for 16000 + 0.98 ⁴ A1 for 17300 to 17350 is greater than 17150 OR M1 for 16000 + 0.98 ³ A1 for 16900 to 17000 is greater than 16807	Accept "[population in] 2018" for 17150 Accept "[population in] 2019" for
	d	17 500 nfww	2	M1 for 17150 × 0.98 ⁻¹ oe or <i>their</i> (a) × 0.98 ⁻¹ oe or 16807 × 0.98 ⁻² oe	16807 NB: M1 for 0.98 ⁻¹ = 1.02[04] and 17150 x 1.02[04] but M0 for 17150 x 1.02 = 17493

OCR GSCE – Thursday 24 May 2018 – Paper 4 (Calculator) Higher Tier

12	(a)	16 500	1		
	(b)	18	1		
	(c)	7460 and 8250 oe or [0].452 and [0] .5 oe	2	M1 for [16 500 ×] .82 ⁴ or 7460 or [0].452	accept 7460.01 or 7460.009 accept any correct argument for 2 marks e.g. 7460×2 and 16 500 or better

OCR GSCE – Thursday 7 June 2018 – Paper 5 (Non - Calculator) Higher Tier

8.

20	(a)	(i)	8	2	M1 for $\left[\left(\sqrt{2}\right)^7 = \right] 2^3 \times \sqrt{2}$	For M1 accept 2 × 2 × 2 for 2^3 Final answer 8 $\sqrt{2}$ scores M1
		(ii)	13	2	B1 for 2 correct trials with $n > 3$ correctly evaluated or M1 for $(\sqrt{2})^{12} = 2^6$ oe or for $\frac{n-1}{2} = 6$ oe	e.g. $(\sqrt{2})^6 = 8 \text{ and } (\sqrt{2})^9 = 16\sqrt{2}$

(b)	$\frac{14}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}$ or better	M1		If written in a single fraction, must have brackets
	$\frac{14(3+\sqrt{2})}{7}$	B3	or M2 for $\frac{14(3+\sqrt{2})}{9+3\sqrt{2}-3\sqrt{2}-(\sqrt{2})^2}$ or better	For B marks or method marks, allow numerator brackets expanded
			or M1 for numerator or denominator correct	For M1, allow denominator unsimplified but not 9 – 2 or 7 if from wrong working Allow M1 for either numerator or
	$2(3+\sqrt{2})$ or $6+2\sqrt{2}$	A1	Dep on M1B3 earned	denominator even if not in fraction

OCR GSCE – Tuesday 6 November 2017 – Paper 5 (Non - Calculator) Higher Tier

9.

11	(a)	(i)	16 000	1		
		(ii)	25	1		
		(iii)	16 000 × 0.75 ² oe with no subsequent error	M2	M1 for 16 000 × 0.75 ² with subsequent error or 16000 × 0.75 oe or for <i>their</i> 12 000 × 0.75	M1 implied by 12000
	(b)		Equation does not give a straight line oe isw	1		Accept 'There is not a constant decrease' oe isw See AG

(c) If you calculate a value for a 20 year- old car it is greater than 0 oe	1	Âccept 'the graph will never reach the x-axis' oe, It will have scrap value The answer is always positive etc Condone additional 'opinion based' information
--	---	---

OCR GSCE – Wednesday 8 November 2017 – Paper 6 (Calculator) Higher Tier

1	(a)	200	2	B1 for 50 or 150 soi	Eg. answer 500 or 275 with (5 × 10) + seen
	<mark>(</mark> b)	$a = rac{2(s-ut)}{t^2}$ oe	2	M1 for $s - ut = \frac{1}{2} at^2$	

OCR GSCE – Wednesday 8 November 2017 – Paper 6 (Calculator) Higher Tier

11.

14	(a)	(34 × 36) – (25 × 45) = 99	2	M1 for either 34 × 36 or 25 × 45 soi by 1224 or 1125	
	(b)	Eg. If $M = n$ $L = (n - 1)(n + 1) = n^2 - 1$ $T = (n - 10)(n + 10) = n^2 - 100$ $L - T = (n^2 - 1) - (n^2 - 100) = 99$	5	B2 for defining relative positions algebraically Eg. $n - 1$, $n + 1$, $n - 10$, $n + 10$ or B1 for at least two relative positions defined algebraically AND M2 for $[L =] (n - 1)(n + 1) = n^2 - 1$ and $[T =] (n - 10)(n + 10) = n^2 - 100$ or M1 for $[L =] (n - 1)(n + 1) = n^2 - 1$ or $[T =] (n - 10)(n + 10) = n^2 - 100$ or $L - T = (their (n - 1)(n + 1) - (their (n - 10)(n + 10)))$ If 0 scored, allow SC1 for one further numerical example	 Or equivalent algebraic representation of relative positions. Condone poor notation for B marks eg B2 for n - 1 × n + 1 - n - 10 × n + 10 For M marks, follow through allowed for working with <i>their</i> relative positions described algebraically as linear expressions: ie. <i>L</i> = Multiplication of their left and right expressions <i>T</i> = Multiplication of their top and bottom expressions M1 could be awarded by expressing <i>their</i> L - <i>their</i> T, even if incorrectly expanded M2 may be embedded

OCR GSCE – Thursday 25 May 2017 – Paper 4 (Calculator) Higher Tier

12.

4		128	2	M1 for $12(4) + \frac{1}{2}(10)(4)^2$	
				or B1 for 48 or 80	

OCR GSCE – Thursday 25 May 2017 – Paper 4 (Calculator) Higher Tier

10	(a)	4200	1		
	(b)	3948 = 4200 <i>r</i> oe 3948 ÷ 4200 = 0.94	B1 B1		Can be implied by e.g. second statement
	(c)	[0].4[0] × 4200 or 1680 4200 × ([0].94) ¹⁵ or 1660[]	M1 M1	accept any correct method e.g. M1 for 4200 × 0.94 ¹⁵ or 1660[] M1 for 1660[] + 4200 [×100] implied by .395[] or 39.5 to 39.6	Alternatives: M2 for 0.94 ¹⁵ = .395[] A1 for 60.4 to 60.5[]
		1660[] and1680 oe	A1	A1 for 60.4 to 60.5[] or 39.5 to 39.6 with a suitable comment	

OCR GSCE – Sample Papers – Paper 4 (Calculator) Higher Tier

14.

3	(a)	£20 000	1		
			1 AO1.3a		
	(b)	£14 580 or £14 600	2	M1 for 20 000 \times 0.9 ³	
			2 AO1.3a		
	(c)	7 years	2	M1 for 2 trials shown	
			1 AO1.3a 1 AO3.1c		

OCR GSCE – Sample Papers – Paper 6 (Calculator) Higher Tier

15.

17 $-\frac{1}{6}$ with working s for discounting w	hown including explanation = -3	B1 for $x^2 = (w + 1)$ M1 for $y = 6(their x^2)^2 + 7(their x^2)$ M1 for their $y = 10$ and make = 0 M1 for solving a three term quad with $a \neq 1$ B1 for discounting a value of w less than -1	$w = -\frac{1}{6}$ and -3 OR $w = -3$ implies 5 marks
---	------------------------------------	---	--

AQA GSCE – Tuesday 21 May 2019 – Paper 1 (Non - Calculator) Higher Tier

16.

24	-1	B1	
----	----	----	--

AQA GSCE – Thursday 6 June 2019 – Paper 2 (Calculator) Higher Tier

17.

	(-1, 6)	B1		
1 Additional Guidan		uidance		

AQA GSCE – Thursday 6 June 2019 – Paper 2 (Calculator) Higher Tier

	Alternative method 1		
	$y + 1 = \frac{2x}{5}$ or $5y = 2x - 5$	M1	x and y may be transposed oe 1st step eg $\frac{y}{2} = \frac{x}{5} - \frac{1}{2}$
	5(y + 1) = 2x or $5y + 5 = 2x$	M1dep	x and y may be transposed oe 2nd step eg $\frac{y}{2} + \frac{1}{2} = \frac{x}{5}$ implies M2
27	$\frac{5(y+1)}{2} \text{ or } \frac{5y+5}{2}$ or $\frac{5(3+1)}{2}$ or 10	A1	may use x instead of y oe expression or calculation eg $\frac{5y}{2} + \frac{5}{2}$ or $\frac{3+1}{\frac{2}{5}}$
	$\frac{2 \times -0.5}{5} - 1 \text{ or } -1.2$ or $-\frac{6}{5}$ or $-1\frac{1}{5}$	M1	oe
	8.8 or $\frac{44}{5}$ or $8\frac{4}{5}$	A1	

Mark scheme and Additional Guidance continue on the next page

	Alternative method 2					
	$\frac{2x}{5} = 3 + 1$ or $\frac{2x}{5} = 4$	M1	oe			
	2x = their 4 × 5	M1dep	oe implies M2			
	10	A1				
	$\frac{2 \times -0.5}{5} - 1$ or -1.2	M1	oe			
	or $-\frac{6}{5}$ or $-1\frac{1}{5}$					
27 cont	8.8 or $\frac{44}{5}$ or $8\frac{4}{5}$	A1				
	Additional Guidance					
	The 4th mark may be seen first and r					
	f may be used for y					
	Missing brackets must be recovered					
	Answer 8.8		M2A1M1A1			
	First three marks in Alt 1					
	Can be gained using a reverse functi (applied to 3) which may be seen in s		ne for a full calculation			
	eg 3+1=4 and 4×5=20 and		M1M1A1			
	Part marks are not possible for this a	pproach				

AQA GSCE – Tuesday 11 June 2019 – Paper 3 (Calculator) Higher Tier

	16 – x ³	M1		
26	$x^{3} = 16 - 24$ or $x^{3} = -8$ or $x = \sqrt[3]{-8}$ or $-x^{3} = 24 - 16$ or $-x^{3} = 8$ or $-x = -\sqrt[3]{-8}$	M1dep		
	-2	A1		
	Ado	ditional G	Buidance	
	$16 - x^3 = 24 x^3 = 24 - 16$			M1M0A0

AQA GSCE – Thursday 8 November 2018 – Paper 2 (Calculator) Higher Tier

20.

	$\frac{x^2-2}{x^2-2+2}$ or $\frac{x^2-2}{x^2}$	M1	
	$\frac{x^2}{x^2} - \frac{2}{x^2}$ or $1 - \frac{2}{x^2}$	A1	implied by correct final answer must be two terms oe eg $x^2x^{-2} - 2x^{-2}$
26	$1 - 2x^{-2}$ or a = 1 and $b = -2$ and $n = -2$	A1	
	Ado	ditional G	Guidance

AQA GSCE – Thursday 8 November 2018 – Paper 2 (Calculator) Higher Tier

	$\frac{1}{64} = k^3$ or $\sqrt[3]{\frac{1}{64}}$	M1	oe equation in <i>k</i>
27	$(k =) \frac{1}{4}$ or $(k =) 0.25$	A1	must see working for M1 implied by $y = \left(\frac{1}{4}\right)^x$ $\left(\frac{1}{4}\right)^3 = \frac{1}{64}$ is M1A1
	$\left(\frac{1}{4}\right)^{\frac{1}{2}} = \frac{1}{2}$ or $0.25^{\frac{1}{2}} = 0.5$	A1	must see working for M1A1 allow $\sqrt{\frac{1}{4}} = \frac{1}{2}$ or $\sqrt{0.25} = 0.5$
	Ade	ditional G	Suidance

AQA GSCE – Thursday 6 November 2017 – Paper 2 (Calculator) Higher Tier

22.

AQA GSCE – Wednesday 8 November 2017 – Paper 3 (Calculator) Higher Tier

23.

AQA GSCE – Wednesday 8 November 2017 – Paper 3 (Calculator) Higher Tier

30	$\frac{6x^{2} + 3}{3}$ or $2x^{2} + 1$ or $\frac{6x^{2} + 3}{3} + 4$ or $2x^{2} + 1 + 4$	M1	oe
	$2x^2 + 5$	A1	
	Additional Guidance		