SUBSTITUTION

Pearson Edexcel - Thursday 2 November 2017 - Paper 1 (Non-Calculator) Higher Tier
1.

20		$1+\sqrt{2}$	B1	for a value for a known trigonometric ratio stated
			P1	for process to form 2 equations in a and b or one correct value stated
P1	for complete process to solve to reach $a=2$ and $b=1$			
A1	for $1+\sqrt{2}$ oe			

Pearson Edexcel - Wednesday 8 November 2017 - Paper 3 (Calculator) Higher Tier

2.

\begin{tabular}{|c|c|c|c|c|}
\hline 21 \& \& $\frac{2}{5}$ \& P1
P1

P1
P1

Al \& | for process to find $\overrightarrow{A B}(=\mathbf{b}-\mathbf{a})$ or $\overrightarrow{B A}(=\mathbf{a}-\mathbf{b})$ |
| :--- |
| for process to find $\overline{M N}\left(=-\frac{1}{2} \mathbf{b}+\mathbf{a}+2 \mathbf{a}\right)$ or $\overline{P N}(=-\mathbf{k}(\mathbf{b}-\mathbf{a})+2 \mathbf{a})$ or $\overrightarrow{M P}\left(=-\frac{1}{2} \mathbf{b}+\mathbf{a}+k(\mathbf{b}-\mathbf{a})\right.$ or $\left.\frac{1}{2} \mathbf{b}+(1-k)(\mathbf{a}-\mathbf{b})\right)$ for process to find two of $\overrightarrow{M N}, \overrightarrow{P N}$ and $\overrightarrow{M P}$ |
| for process to find k, using $\overline{M N}$ as a multiple of $\overline{P N}$ or using $\overline{M N}$ as a multiple of $\overrightarrow{M P}$ or using $\overrightarrow{P N}$ as a multiple of $\overrightarrow{M P}$ |
| for $\frac{2}{5}$ oe |

\hline
\end{tabular}

Pearson Edexcel - Wednesday 13 June 2012 - Paper 2 (Calculator) Higher Tier

3.

19	$\begin{aligned} & \sqrt{\frac{8.5 \times 10^{9}-4 \times 10^{8}}{8.5 \times 10^{9} \times 4 \times 10^{8}}} \\ & =\sqrt{\frac{8.1 \times 10^{9}}{3.4 \times 10^{18}}} \\ & =\sqrt{2.3823529 \ldots \times 10^{-9}} \end{aligned}$ OR $\begin{aligned} & \sqrt{\frac{1}{4 \times 10^{8}}-\frac{1}{8.5 \times 10^{9}}} \\ & =\sqrt{2.5 \times 10^{-9}-1.17647 \times 10^{-10}} \\ & =\sqrt{2.3823529 \ldots \times 10^{-9}} \end{aligned}$	4.9×10^{-5}	3	B3 for 4.88×10^{-5} to 4.9×10^{-5} (B2 for digits 238(23529) or 24 or $488(09353)$ or 49) (B1 for digits 81 or 34) OR B3 for 4.88×10^{-5} to 4.9×10^{-5} (B2 for digits 238(23529) or 24 or $488(09353)$ or 49) (B1 for digits 25 or 117(647))

Pearson Edexcel - Tuesday 10 November 2009 - Paper 4 (Calculator) Higher Tier

4.

| 3 | (a) | $3 \times 2+5 \times-4$ | -14 | 2 | M1 for $3 \times 2+5 \times-4$ oe
 Al cao for -14 | 6 and -20 seen |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| (b) | | $3(m-2)$ | 1 | B1 cao | | |

OCR GSCE - Tuesday 5 November 2019 - Paper 6 (Calculator) Higher Tier
5.

| $\mathbf{1 0}$ | (a) | 165000 | $\mathbf{1}$ | | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| | (b) | 3 | $\mathbf{1}$ | | |
| | (c) | 165000×1.03^{7}
 202929.1878 truncated or
 rounded to at least 3sf | $\mathbf{1}$ | | |

OCR GSCE - Tuesday 11 June 2019 - Paper 6 (Calculator) Higher Tier
6.

22	a	17150	1		
	b	$16807 \div 17150=0.98$	1	$\begin{array}{\|l\|} \hline \text { Condone: } \\ 17150 \times[0] .98=16807 \\ 16807 \div[0] .98=17150 \\ \hline \end{array}$	
	c	15818 to 15819	2	M1 for 17150×0.98^{4} or their (a) $\times 0.98^{4}$ or for 16807×0.98^{3} and A1FT from their (a) $\times 0.98^{4}$ correctly evaluated Alternative methods using division M1 for $16000 \div 0.98^{4}$ A1 for 17300 to 17350 is greater than 17150 OR M1 for $16000 \div 0.98^{3}$ A1 for 16900 to 17000 is greater than 16807	FT from their (a), and only if method shown Accept "[population in] 2018" for 17150 Accept "[population in] 2019" for 16807
	d	17500 nfww	2	M1 for 17150×0.98^{-1} oe or their (a) $\times 0.98^{-1}$ oe or 16807×0.98^{-2} oe	NB: M1 for $0.98^{-1}=1.02[04 \ldots]$ and $17150 \times 1.02[04 \ldots]$ but MO for $17150 \times 1.02=17493$

OCR GSCE - Thursday 24 May 2018 - Paper 4 (Calculator) Higher Tier
7.

$\mathbf{1 2}$	(a)	16500	$\mathbf{1}$			
	(b)	(c)	7460 and 8250 oe or $[0] .452 \ldots$ and $[0] .5$ oe	$\mathbf{1}$		
		M1 for $[16500 \times] .82^{4}$ or 7460 or $[0] .452$	accept 7460.01 or $7460.009 \ldots$ accept any correct argument for 2 marks e.g. 7460×2 and 16500 or better			

OCR GSCE - Thursday 7 June 2018 - Paper 5 (Non - Calculator) Higher Tier
8.

| 20 | (a) | (i) | 8 | $\mathbf{2}$ | M1 for $\left[(\sqrt{2})^{7}=\right] 2^{3} \times \sqrt{2}$ | For M1 accept $2 \times 2 \times 2$ for 2^{3}
 Final answer $8 \sqrt{2}$ scores M1 |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| | (ii) | 13 | $\mathbf{2}$ | B1 for 2 correct trials with $n>3$ correctly
 evaluated
 or M1 for $(\sqrt{2})^{12}=2^{6}$ oe or for $\frac{n-1}{2}=6$ 0e | e.g. $(\sqrt{2})^{6}=8$ and $(\sqrt{2})^{9}=16 \sqrt{2}$ | |

| (b) | $\frac{14}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}$ or better
 $\frac{14(3+\sqrt{2})}{7}$ | M1 | | If written in a single fraction, must have
 brackets |
| :--- | :--- | :--- | :--- | :--- | :--- |
| B3 | or M2 for $\frac{14(3+\sqrt{2})}{9+3 \sqrt{2}-3 \sqrt{2}-(\sqrt{2})^{2}}$ or better
 or M1 for numerator or denominator
 correct
 For B marks or method marks, allow | | | |
| numerator brackets expanded | For M1, allow denominator unsimplified
 but not $9-2$ or 7 if from wrong working
 Allow M1 for either numerator or
 denominator even if not in fraction | | | |

OCR GSCE - Tuesday 6 November 2017 - Paper 5 (Non - Calculator) Higher Tier

9.

11	(a)	(i)	16000	$\mathbf{1}$		
		(ii)	25	$\mathbf{1}$		
	(iii)	16000×0.75^{2} oe with no subsequent error	M2	M1 for 16000×0.75^{2} with subsequent error or 16000×0.75 oe or for their 12000×0.75	M1 implied by 12000	
	(b)		Equation does not give a straight line oe isw	$\mathbf{1}$		Accept 'There is not a constant decrease' oe isw See AG

	(c)		If you calculate a value for a 20 year- old car it is greater than 0 oe	$\mathbf{1}$	
Accept 'the graph will never reach the x-axis oe, It will have scrap value The answer is always positive etc Condone additional 'opinion based' information					

OCR GSCE - Wednesday 8 November 2017 - Paper 6 (Calculator) Higher Tier

10.

| $\mathbf{1}$ | (a) | B1 for 50 or 150 soi | $\mathbf{2}$ | Eg. answer 500 or 275 with (5 $\times 10$)
 $+\ldots$ seen | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| | (b) | $a=\frac{2(s-u t)}{t^{2}}$ oe | $\mathbf{2}$ | M1 for $s-u t=1 / 2$ at ${ }^{2}$ | |

OCR GSCE - Wednesday 8 November 2017 - Paper 6 (Calculator) Higher Tier
11.

$\mathbf{1 4}$	(a)		$(34 \times 36)-(25 \times 45)=99$	$\mathbf{2}$	M1 for either 34×36 or 25×45 soi by 1224 or 1125	

OCR GSCE - Thursday 25 May 2017 - Paper 4 (Calculator) Higher Tier
12.

$\mathbf{4}$			128	$\mathbf{2}$	M1 for $12(4)+\frac{1}{2}(10)(4)^{2}$ or B1 for 48 or 80	

OCR GSCE - Thursday 25 May 2017 - Paper 4 (Calculator) Higher Tier
13.

OCR GSCE - Sample Papers - Paper 4 (Calculator) Higher Tier
14.

| 3 | (a) | $£ 20000$ | 1
 1 AO1.3a | | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| | (b) | $£ 14580$ or $£ 14600$ | $\mathbf{2}$
 2 AO1.3a | M1 for 20000×0.9^{3} | |
| | (c) | 7 years | $\mathbf{2}$
 1 AO1.3a
 1 AO3.1c | M1 for 2 trials shown | |

OCR GSCE - Sample Papers - Paper 6 (Calculator) Higher Tier
15.

AQA GSCE - Tuesday 21 May 2019 - Paper 1 (Non - Calculator) Higher Tier
16.

$\mathbf{2 4}$	-1	B1	

AQA GSCE - Thursday 6 June 2019 - Paper 2 (Calculator) Higher Tier
17.

1	$(-1,6)$	B1		
	Additional Guidance			

AQA GSCE - Thursday 6 June 2019 - Paper 2 (Calculator) Higher Tier
18.

27	Alternative method 1		
	$y+1=\frac{2 x}{5} \text { or } 5 y=2 x-5$	M1	x and y may be transposed oe 1st step eg $\frac{y}{2}=\frac{x}{5}-\frac{1}{2}$
	$5(y+1)=2 x$ or $5 y+5=2 x$	M1dep	x and y may be transposed oe 2nd step eg $\frac{y}{2}+\frac{1}{2}=\frac{x}{5}$ implies M2
	$\begin{aligned} & \frac{5(y+1)}{2} \text { or } \frac{5 y+5}{2} \\ & \text { or } \frac{5(3+1)}{2} \text { or } 10 \end{aligned}$	A1	may use x instead of y oe expression or calculation eg $\frac{5 y}{2}+\frac{5}{2}$ or $\frac{3+1}{\frac{2}{5}}$
	$\begin{aligned} & \frac{2 \times-0.5}{5}-1 \text { or }-1.2 \\ & \text { or }-\frac{6}{5} \text { or }-1 \frac{1}{5} \end{aligned}$	M1	oe
	8.8 or $\frac{44}{5}$ or $8 \frac{4}{5}$	A1	

Mark scheme and Additional Guidance continue on the next page

27 cont	Alternative method 2			
	$\frac{2 x}{5}=3+1$ or $\frac{2 x}{5}=4$	M1	oe	
	$2 x=$ their 4×5	M1dep	oe implies M2	
	10	A1		
	$\begin{aligned} & \frac{2 \times-0.5}{5}-1 \text { or }-1.2 \\ & \text { or }-\frac{6}{5} \text { or }-1 \frac{1}{5} \end{aligned}$	M1	oe	
	8.8 or $\frac{44}{5}$ or $8 \frac{4}{5}$	A1		
	Additional Guidance			
	The 4th mark may be seen first and may be the only mark awarded			
	f may be used for y			
	Missing brackets must be recovered			
	Answer 8.8			M2A1M1A1
	First three marks in Alt 1 Can be gained using a reverse function machine for a full calculation (applied to 3) which may be seen in stages eg $3+1=4$ and $4 \times 5=20$ and $20 \div 2$ Part marks are not possible for this approach			M1M1A1

AQA GSCE - Tuesday 11 June 2019 - Paper 3 (Calculator) Higher Tier
19.

26	$16-x^{3}$	M1		
	$x^{3}=16-24$ or $x^{3}=-8$ or $x=\sqrt[3]{-8}$ or $-x^{3}=24-16$ or $-x^{3}=8$ or $-x=-\sqrt[3]{-8}$	M1dep		
	-2	A1		
	Additional Guidance			
	$16-x^{3}=24 x^{3}=24-16$			M1M0AO

AQA GSCE - Thursday 8 November 2018 - Paper 2 (Calculator) Higher Tier
20.

26	$\frac{x^{2}-2}{x^{2}-2+2}$ or $\frac{x^{2}-2}{x^{2}}$	M1	
	$\frac{x^{2}}{x^{2}}-\frac{2}{x^{2}}$ or $1-\frac{2}{x^{2}}$	A1	implied by correct final answer must be two terms oe eg $x^{2} x^{-2}-2 x^{-2}$
	$1-2 x^{-2}$ or $a=1$ and $b=-2$ and $n=-2$	A1	
	Additional Guidance		

AQA GSCE - Thursday 8 November 2018 - Paper 2 (Calculator) Higher Tier
21.

27	$\frac{1}{64}=k^{3}$ or $\sqrt[3]{\frac{1}{64}}$	M1	oe equation in k
	($k=$) $\frac{1}{4}$ or $(k=) 0.25$	A1	must see working for M1 implied by $y=\left(\frac{1}{4}\right)^{x}$ $\left(\frac{1}{4}\right)^{3}=\frac{1}{64}$ is M1A1
	$\left(\frac{1}{4}\right)^{\frac{1}{2}}=\frac{1}{2}$ or $0.25^{\frac{1}{2}}=0.5$	A1	must see working for M1A1 allow $\sqrt{\frac{1}{4}}=\frac{1}{2}$ or $\sqrt{0.25}=0.5$
	Additional Guidance		

AQA GSCE - Thursday 6 November 2017 - Paper 2 (Calculator) Higher Tier
22.

3	$\left(\frac{1}{3}, \frac{1}{9}\right)$	B1	
	Additional Guidance		

AQA GSCE - Wednesday 8 November 2017 - Paper 3 (Calculator) Higher Tier
23.

AQA GSCE - Wednesday 8 November 2017 - Paper 3 (Calculator) Higher Tier
24.

| 30 | $\frac{6 x^{2}+3}{3}$
 or $2 x^{2}+1$
 or $\frac{6 x^{2}+3}{3}+4$
 or $2 x^{2}+1+4$ | oe | |
| :---: | :--- | :--- | :--- | :--- |
| | $2 x^{2}+5$ | M1 | |

